Effect of cerebrovascular changes on brain DTI quantitation: a hypercapnia study.

نویسندگان

  • Abby Y Ding
  • Kevin C Chan
  • Ed X Wu
چکیده

Quantitative diffusion tensor imaging (DTI) offers a valuable tool to probe the microstructural changes in neural tissues in vivo, where absolute quantitation accuracy and reproducibility are essential. It has been long recognized that measurement of apparent diffusion coefficient (ADC) using DTI could be influenced by the presence of water molecules in cerebrovasculature. However, little is known about to what extent such blood signal affects DTI quantitation. In this study, we quantitatively examined the effect of cerebral hemodynamic change on DTI indices by using a standard multislice echo planar imaging (EPI) spin echo (SE) DTI acquisition protocol and a rat model of hypercapnia. In response to 5% CO(2) challenge, mean, radial and axial diffusivities measured with diffusion factor (b-value) of b=1.0 ms/μm(2) were found to increase in whole brain (1.52%±0.22%, 1.66%±0.16% and 1.35%±0.37%, respectively), gray matter (1.56%±0.23%, 1.63%±0.14% and 1.47%±0.45%, respectively) and white matter regions (1.45%±0.28%, 1.88%±0.33% and 1.10%±0.26%, respectively). Fractional anisotropy (FA) was found to decrease by 1.67%±0.38%, 1.91%±0.59% and 1.46%±0.30% in whole brain, gray matter and white matter regions, respectively. In addition, these diffusivity increases and FA decreases became more pronounced at a lower b-value (b=0.3 ms/μm(2)). The results indicated that in vivo DTI quantitation in brain can be contaminated by vascular factors on the order of few percentages. Consequently, alterations in cerebrovasculature and hemodynamics can affect the DTI quantitation and its efficacy in characterizing the neural tissue microstructures in normal and diseased states. Caution should be taken in designing and interpreting quantitative DTI studies as all DTI indices can be potentially confounded by physiologic conditions and by cerebrovascular and hemodynamic characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title The effects of hypercapnia on DTI quantification in anesthetized rat brain

Diffusion Tensor Imaging (DTI) offers a valuable in vivo tool to characterize water diffusion behavior in biological tissues, particularly brain tissues. The accuracy of DTI derived parameters can directly affect the interpretation of underlying microstructures, physiology or pathologies. It is anticipated that measurement of apparent diffusion coefficient (ADC) using DTI could be influenced an...

متن کامل

Effects of Hypercapnia on DTI Quantification

Introduction Diffusion Tensor Imaging (DTI) offers a valuable in vivo tool to characterize water diffusion behavior in biological tissues, particularly brain tissues. To such principle, it can be predicted that quantification of diffusivity might be interfered by the presence of cerebral vasculature. However, knowledge about the degree of influencing of vasculature effects towards diffusion ind...

متن کامل

B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes

Recently, remarkable success has been demonstrated in using MR diffusion tensor imaging (DTI) to characterize white matter. Water diffusion in complex biological tissue microstructure is not a free or Gaussian process but is hindered and restricted, thus contradicting the basic assumption in conventional DTI that diffusion weighted signal decays with b-value in a monoexponential manner. Neverth...

متن کامل

A Critique of Studies on The Combined Effect of Dust Storms and Meteorological elements on Cardiovascular, Cerebrovascular, and Respiratory Diseases

Brief policy The studies reviewed in this section are from PubMed, ISI, Science Direct, Google Scholar, and Scopus databases using the following keywords: dust storm, meteorological elements, temperature, heat wave, cold wave, relative humidity, wind blow, atmospheric pressure, cardiovascular diseases, respiratory diseases, cerebrovascular diseases, myocardial infarction (MI), stroke (CVA), l...

متن کامل

Effect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia

Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2012